What it is
What it could be
What happened to Biology at the end of XXth century?

A NEW APPROACH TO DECODING LIFE:
Systems Biology

Trey Ideker1,2, Timothy Galitski1, and Leroy Hood1,2,3,4,5

Institute for Systems Biology1, Seattle, Washington 98105; Departments of

Ohmsha, Ltd. and Springer-Verlag

invited paper

Perspectives on Systems Biology

Hiroaki KITANO
Sony Computer Science Laboratories, Inc.

©Ohmsha, Ltd.
What happened to biology at the end of XXth century?
New way of doing biomedical research

Needs for interplay between models and reality tests

Needs for systems thinking and integration of heterogeneous knowledge

Needs for cooperation and standardisation

\[\frac{dx}{dt} = f(X, P, t) \]
Computational modelling left the niches

- **Pharmacometrics models** Labrijn et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. *Nat Biotechnol* 2009

- **Physiological models** Noble. Modeling the heart from genes to cells to the whole organ. *Science* 2002; Izhikevich and Edelman. Large-scale model of mammalian thalamocortical systems. *PNAS* 2008

Computational models on the rise

BioModels Database growth since its creation

http://www.ebi.ac.uk/biomodels/
Interest from new stakeholders

- “Biologists”: computational models look “useful”, “serious”

- Publishers: computational are respectable, and can be published in high profile journals

- Funding agencies: Models could help with the major challenges (read “science that can be sold to citizen/electors”): Health, Food, Energy...

- Industries: Models could help with the major challenges (read “new opportunities to make money”): Pharmas, crops, biofuels ...
The matrix of standards for M&S in Sys Bio

<table>
<thead>
<tr>
<th></th>
<th>Model descriptions</th>
<th>Simulations and analysis</th>
<th>Numerical results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-models</td>
<td></td>
<td></td>
<td>NuML?</td>
</tr>
<tr>
<td>Terminologies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimension 3: Covering alternative modelling approaches
Parallel and redundant efforts

- Neurobiology
- Physiology
- Systems Biology
- Pharmacometrics
- Developmental biology, plant biology
- BioPAX
- SbML
- SbGN
- NineML
- FieldML
- IncF
- Virtual Physiological Human network of excellence
- Drug Disease Model Resources
What if the world-wide web was built like this?
The correct way to do it

Personal info: vCard
Presentation: CSS
Semantics: RDF
Graphics: SVG
Display: HTML
Covering the entire modeling in the life-sciences

model type

Mean-field

state transition

process description

model semantics

biological semantics

visual representation

level of representation

model life-cycle

model generation

model description

simulation analysis

numerical results

...
Existing standards interoperability
Threats to the whole enterprise

- Current efforts are largely dependent on key people. Their disengagement means stalling or disaggregation.
- Current funding structure is fragile. Many different grants, sometimes only supporting meetings, none of them infrastructure rolling funding, often tied to individuals.
- Current efforts, being developed under the umbrellas of specific institutions are not immune against intellectual property claims that would harm the community.
- Existing standards are developed with very different approaches, quality checks, and are based on completely different assumptions (e.g. implicit knowledge versus explicit mathematics).
- APIs, converters etc. need industry-grade support, incompatible with standard academic usages and possibilities.
Overarching standardisation structure

The “WorldWide Web consortium” of modelling in biology

http://co.mbine.org/
Mission 1: Coordinating the standards

- **CORE STANDARDS:** Efforts fulfilling COMBINE criteria and aiming at following COMBINE rules and interoperate with other COMBINE standards.

- **ASSOCIATED EFFORTS:** Standards that are not representation formats, but aiming at enrich or bridge the core standards.

- **RELATED EFFORTS:** Formats developed by other communities, that complement or interoperate with COMBINE formats, and that we would like to see joining COMBINE or collaborating closely to COMBINE.
Current core COMBINE standards

- Model semantics, Model structure, Process description: S8ML

- Models semantics, Simulation and Analysis: SEDML

- Biological semantics, Model structure, Process description, Entity relationships: BioPAX

- Visual representation, Model structure, Process description, Entity Relationships, Activity flow: GN8
Current associated standardization efforts

- Concept and data reference:
 - MIRIAM Registry
 - Identifiers.org URIs

- Terminologies:
 - Modeling
 - Simulation
Related standardization efforts

PSI-MI

FieldML

NuML?
COMBINE does NOT aim to take over the development of the standard formats, but help coordinating and supporting this process.
Mission 2: Coordinating meetings

- Annual COMBINE meetings
 - COMBINE 2010: October 6–9, Edinburgh, 81 attendees
 - COMBINE 2011: September 3-7, Heidelberg, 82 registrations
 - COMBINE 2012: End of summer, beginning autumn, Toronto
 - COMBINE 2013: Date unknown, location unknown
 http://www.surveymonkey.com/s/combine-harmony-hosting-interest

- The Hackathons on Resources for Modeling in Biology
 - HARMONY 2011: April 18-22, New-York City, 59 attendees
 - HARMONY 2012: Date unknown, location unknown
 http://www.surveymonkey.com/s/combine-harmony-hosting-interest
Mission 3: Developing Standard Operating Procedures

- Technical requirements
 - Who format covers what portion of the modeling space
 - Which technical solutions exist and must be used by the formats
 - How do formats interface
 - How to specify and document formats
 - ...

- Governance
 - How to initiate and maintain standardisation efforts
 - How to communicate with users and developers
 - How to develop a democratic and robust governance
 - ...
First tentative SOP: guidelines to develop a core COMBINE standard

- List the new development as a related standardization effort
- Join COMBINE community and attend meetings
- Comply with COMBINE criteria
 - Must cover aspects of modeling significantly different from the existing set of COMBINE standards
 - Must be described in precise technical specification documents and formal specification languages
 - Specifications and other materials must be publicly available free of charge to everyone and be unencumbered by licensing restrictions
 - Development must be open. The entire COMBINE community must be able to participate without exclusion
 - Must be developed and used by more than a single team or organisation.
 - Development process must be led by democratically elected editorial boards
 - Mature software support must exist, including standard API implementations, and possibly validation tools
 - Development must be stable and active
- Decision by the coordinators (alt: vote of the community?)
Mission 4: Recognised voice

- COMBINE aims to become a “standardisation” body
 - This means a quality label. A “COMBINE standard” is a guarantee of stability, community endorsement, support etc.
 - COMBINE production can be used in SOPs at other organisations
 - COMBINE must be an actor on par with FGED, PSI, INCF etc.
- Single point of contact with user organisations including Industry
 - Tool developers (General platforms or specific tools)
 - Publishers
 - Pharmaceutical industry
- A point of contact for funding bodies
- A point of contact for legal entities, e.g. government and regulatory bodies
Where to find more information?

Communities
- http://biopax.org/
- http://sbgn.org/
- http://sbml.org/
- http://sed-ml.org/
- http://biomodels.net/
- http://biomodels.net/kisao
- http://biomodels.net/sbo
- http://biomodels.net/teddy
- http://biomodels.net/miase
- http://biomodels.net/miriam

Coordination
- http://combine.org/

Acknowledgements

SBML editors: Frank Bergmann, Andrew Finney, Stefan Hoops, Michael Hucka, Nicolas Le Novère, Sarah Keating, Chris Myers, Sven Sahle, Herbert Sauro, Jim Schaff, Lucian Smith, Darren Wilkinson

SBGN editors: Emek Demir, Nicolas Le Novère, Huaiyu Mi, Stuart Moodie, Falk Schreiber, Anatoly Sorokin, Alice Villéger

BioPAX editors: Peter D'Eustachio, Oliver Ruebenacker, Andrea Splendiani

SED-ML editors: Richard Adams, Franck Bergmann, Nicolas Le Novère, Andrew Miller, David Nickerson, Dagmar Waltemath

Metadata: Mélanie Courtot, Nick Juty, Camille Laibe, Anna Zhukova

The whole community of Computational Systems Biology
<table>
<thead>
<tr>
<th></th>
<th>Model descriptions</th>
<th>Simulations and analysis</th>
<th>Numerical results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-models</td>
<td></td>
<td></td>
<td>NuML?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model descriptions</td>
<td>Simulations and analysis</td>
<td>Numerical results</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Minimal requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-models</td>
<td></td>
<td></td>
<td>NuML?</td>
</tr>
<tr>
<td>Terminologies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is the matrix of standards complete?
Dimension 1: Covering the entire model life-cycle

<table>
<thead>
<tr>
<th>Model generation</th>
<th>Model structure</th>
<th>Parametrisation</th>
<th>Simulations and analysis</th>
<th>Numerical results</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>S8ML™</td>
<td>?</td>
<td>SED ML</td>
<td>NUML?</td>
</tr>
</tbody>
</table>
Dimension 2: Representing the levels of discourse

- Graphical representation
- Biological semantics
- Initial conditions (numbers)
- Model semantics (structure)