Introduction
The perception of own actions is affected by both visual information and predictions derived from internal models. We used explicit physiological models to control theoretical frame...

Graphical Model
Both include arbitrary random variables (e.g., that models the sense of agency), that the belief that the visual feedback X_v and the internal motion state X_t are not independent, the principal results for 1° deviation from predicted action are shown in Fig. 3.

Parameter Estimation (2)
To approximate the joint distribution of X_v and X_e, we used the following parameter estimation protocol.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{X_v}</td>
<td>0.2</td>
</tr>
<tr>
<td>σ_{X_e}</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Experiments

Results (2)

Discussion and Conclusion

Acknowledgements

References