SBGN support in BIOCHAM

Biochemical Abstract Machine

Dragana JOVANOVSKA
INRIA Paris – Rocquencourt, France

06.10.2010

SBGN-6, COMBINE MEETING, Edinburgh UK
SBGN support in BIOCHAM

Outline:

- **BioCham** – Biochemical Abstract Machine
- SBGN support in BioCham
- Biocham Reaction Graph **Editor**
- Conclusion
- On-going work
SBGN support in BIOCHAM

BioCham – Biochemical Abstract Machine

- http://contraintes.inria.fr/biocham
- different simulators
- temporal logic based language
- features for correcting/completing/reducing/relating/coupling models

BIOCHAM MODEL Consists of

- Rules
- Events
- Initial concentrations
- Molecules
- Compartments volumes
- Parameters
- Macros
- Conservations Laws
- Temporal Logic Specifications

Modelling

Analysing

SBML compatible
SBGN support in BIOCHAM

Analysing features in Biocham:

- Simulations (Numerical, Boolean, Stochastic)
- Parameters Search
- Static analyses
 - parameters dimensions
 - kinetics consistency
 - influence graph
 - protein functions
 - model comparison
- Trace Analyse
- Model Checking
- Reduce Model
- Learn Rules – to complete or modify the model
- Revise Model using theory revision algorithm

Biocham Model
SBGN support in BIOCHAM

SBGN Entity pool nodes, Defined Sets of EPNs and Auxiliary Units:

Macromolecule, Nucleic Acid Feature, Multimer, Complex, Source and Sink, Compartment, Unit of Information(cardinality), State Variable(modified)

Biocham objects' grammar:

object = molecule | molecule::name located molecule

molecule =
 name
 | molecule-molecule molecular complex
 | molecule-(name,...,name) modified molecule
 | gene
 | (molecule)

gene = #name
SBGN support in BIOCHAM

SBGN Entity pool nodes, Defined Sets of EPNs and Auxiliary Units:

Macromolecule, Nucleic Acid Feature, Multimer, Complex, Source and Sink, Compartment, Unit of Information(cardinality), State Variable(modified), *Labeled Clone Marker***

Biocham objects' grammar:

```
object = molecule | molecule::name located molecule

molecule =
  name
  | molecule-molecule molecular complex
  | molecule-(name,...,name) modified molecule
  | gene
  | ( molecule )

gene = #name
```

SBGN support in BioCham: SBGN Process Nodes:

Process, Association and Dissociation

Biocham reactions' grammar:

reaction = kinetics for basic_reaction
| basic_reaction
| name : basic_reaction
| name : kinetics for basic_reaction

basic_reaction = solution => solution.
| solution = [object] => solution.
| solution = [solution => solution] => solution.
| solution <=> solution.
| solution <= [object] => solution.

solution = _ | object | integer*object | solution + solution | (solution)

SBGN-6, COMBINE MEETING, Edinburgh UK
SBGN support in BioCham:

SBGN Process Nodes and Arcs:

Process, Association and Dissociation; Consumption, Production and Modulation

Biocham reactions' grammar:

\[
\text{reaction} = \begin{cases} \text{kine} & \text{tics for basic_reaction} \\ | & \text{basic_reaction} \\ | & \text{name : basic_reaction} \\ | & \text{name : kine} & \text{tics for basic_reaction} \end{cases}
\]

\[
\text{basic_reaction} = \begin{cases} \text{solution} & \text{solution.} \\ | & \text{solution} & \text{solution} & \text{solution.} \\ | & \text{solution} & \text{solution} & \text{solution.} \\ | & \text{solution} & \text{solution} & \text{solution.} \end{cases}
\]

\[
\text{solution} = \begin{cases} & \text{_} | \text{object} | \text{integer_object} | \text{solution} & \text{solution} | \text{solution} \end{cases}
\]
SBGN support in BIOCHAM

- **Biocham Reaction Graph Editor**
SBGN support in BIOCHAM

- Biocham Reaction Graph Editor
SBGN support in BIOCHAM

Biocham Reaction Graph Editor
BioCham Reaction Graph Editor

Validation of the syntax and the semantics
BioCham Reaction Graph Editor

Validation of the syntax and the semantics

- **Wrong kinetics**
 - Value of type `<reaction>` or `<set_of_reactions>` expected.

- **Wrong molecules name**
 - Two genes (≠ g1 and ≠ g2) are present in the left side of rule.
 - There are genes in left side of rule `a + #gene`, which are not in the right side.
 - Not enough parameters.
 - Too many parameters (or syntax error).
BioCham Reaction Graph Editor

Validation of the syntax and the semantics
CONCLUSION
Proposal for SBGN

Nested complexes
CONCLUSION

Proposal for SBGN

Nested complexes
CONCLUSION

- Biocham is based on a formal language for modelling biochemical systems
- Static analyses in the Graphical User Interface
- SBGN Graphical Editor - The best of the both worlds (formal and graphical)
On-going work

- Better automatic Layout
- Layout saving format and reuse of layout
- Generalization of graphical operations to edit model reductions [Gay Soliman Fages bioinformatics 2010]
SBGN support in BIOCHAM

Thank You!!!!

biocham@inria.fr

http://contraintes.inria.fr/BIOCHAM/
Thank You!!!!

Members of Contraintes:

François Fages (INRIA senior research scientist, team leader)

Géorgy Biant (INRIA research scientist)

Guillaume Deransart (INRIA senior research scientist)

Ivan Solomon (INRIA research scientist, vice-leader)

Nicolas Belkechama (associate, professor EMN Nantes)

Denis Thieffry (associate, professor ENS Ulm)

Elisabetta De Maria (INRIA post-doctorate engineer)

Ivan Fradaiere (INRIA post-doctorate fellow)

Julien Dupontet (PhD student, INRIA)

Sophien Gay (PhD student, INRIA)

Emilie Heitzler (PhD student, ASC INRA Tours)

Julien Martin (PhD student, INRIA)

Thierry Martineau (PhD student, INRIA)

Hatem Nadji (PhD student, INRIA)

Aurélien Ritz (PhD student, INRIA)

Jannis Ulhendorf (PhD student, INRIA)

Dragana Jovanovska (INRIA engineer)