Structural insight to thymidylate kinase of *Streptococcus mitis* : a potential common drug target of infective endocarditis

Vani priyadarshini*, Dibyabhaba Pradhan, Muni kumar and Amineni Umamaheswari**

SVIMS Bioinformatics centre, SVIMS university, Tirupati, PIN-517307, Andhra Pradesh, India.

* Presenting Author; ** Corresponding Author; Email: svims.btisnet@nic.in

Key points

- The incidence of infective endocarditis (IE) represents the fourth leading cause of life-threatening infectious disease with a yearly incidence of 15,000 to 20,000 new cases.

- *Streptococcus, Enterococcus, Legionella, Staphylococcus, Brucella, tropheryma, Cosiella, Bottorica, Nocardia, Chlamidia, Neisseria, HACEK and Mycoplasma* are the causative organisms of IE.

- *Streptococcus mitis* NCTC 12261, *Enterococcus faecalis* V583 and *Staphylococcus aureus* subsp aur JH9 were identified as three predominant pathogens in IE patients of SVIMS hospital and explored for common novel drug targets from available whole genome sequences through comparative genomic approach, subtractive genomic approach and metabolic pathway analysis.

- Thymidylate kinase plays a vital role in pyrimidine metabolism in deoxyribonucleic acid (DNA) synthesis and was identified as novel common potential drug target against IE.

- In the present study, computational tools were utilized to gain insight on physico-chemical, structural and functional aspects of Thymidylate kinase of *Streptococcus mitis* (the most predominant IE pathogen in SVIMS hospital). Active site of modeled thymidylate kinase was determined for assisting structure based drug discovery.

Results and Discussion

Active site prediction

Figure: (6) Model in complex with substrate TMP (7) Interactions of TMP at thymidylate kinase active site (8) MSA showing conserved active site residues

Conclusion

- Designing drug molecule against thymidylate kinase would certainly stop DNA synthesis in the pathogen by blocking pyrimidine metabolism pathway. Thus, pathogen would not be able proliferate in the host. Therefore, thymidylate kinase as a drug target would overcome potential concerns of drug resistance against IE causing organism.

- From the twenty models of thymidylate kinase generated by Modeller based on satisfaction of spatial restraints, the final model selected based on DOPE score, was further assessed by various structure validation methods which affirmed the reliable conformation of the model. This model will enlighten us about structure, function relationship and will aid in rational drug design.

- Moreover, the amino acid residues of active site being conserved across the three organisms identified in SVIMS hospital demand special attention during rational drug development exercises.

- Finally, homology model in complex with its natural substrate (TMP) can be explored through ligand based virtual screening to propose potential novel inhibitors against IE.

Acknowledgements

Authors are highly thankful to DBT, Ministry of science and technology, Govt. of India for supporting research activities at SVIMS Bioinformatics centre. We are also thankful to Dr. B.Vengamma, Director, SVIMS, for her constant encouragement and support.