A perspective from Neuroscience

- NeuroML
 - www.neuroml.org (examples)

- NineML
 - www.nineml.org

- ...PSICS
 - www.psics.org

Physically extended systems
Tools implement problem-specific methods
Initial focus on what the tools can do, not what the model is
• Works OK(ish) for neurons, ion channels, possibly networks.
• Extension to synapse models risks an explosion of component types and unmanageable specifications.
• → shift to a catalog of user-defined types
• But want to keep the simple top-level specification and avoid duplicating the maths
Electrical Circuit

Kirchoff's Laws

\[I_1 + i_2 + i_3 = 0 \]
\[I_4 - i_3 + i_5 = 0 \]
Etc

Abstracting Kirchoff's laws as shared knowledge allows a mode to be communicated at the diagram level rather than the equation level.

Hodgkin Huxley ion channel model

\[I_{Na} = 32 \cdot m^3 \cdot h \cdot i \cdot (v - 55) \]
\[m_\infty = \frac{\alpha_m}{(\alpha_m + \beta_m)}; \quad \tau_m = 0.5/(\alpha_m + \beta_m) \]
\[\alpha_m = 0.4(v + 30)/(1 - \exp(-(v + 30)/7.2)) \]
\[\beta_m = 0.124(v + 30)/\exp(v) \]
\[h_\infty = 1/(1 + \exp((v + 50)/4) \]
\[\tau_h = 0.5/(\alpha_h + \beta_h) \]
\[\alpha_h = 0.03(v + 45)/(1 - \exp v) \]
\[\beta_h = 0.01(v + 45)/\exp((v - 10)/8) \]
\[i_\infty = (1 + h_i \exp((v + 58)/2))/(1 + \exp((v + 58)/2)) \]
\[\tau_i = 3 \cdot 10^4 \beta_i / (1 + \alpha_i) \]
\[\alpha_i = \exp(0.45(v + 60)) \]
\[\beta_i = \exp(0.09(v + 60)) \]
Original HH model and almost all derivatives have:

- Serial independent gates
- Gate opening and closing governed by a rate expression with one of three forms:
 - $\exp(V)$
 - $\exp(V) / (1+\exp(v))$
 - $V / (1 – \exp(-V))$
- Each rate expression has three parameters – V scale, Rate scale, V offset
PSICS exploits this structure to allow concise expression of HH style models:

```xml
<KSChannel id="HH_Na" permeantIon="Na" gSingle="20pS">
  <KSComplex id="m" instances="3">
    <ClosedState id="c"/>
    <OpenState id="o"/>
    <ExpLinearTransition from="c" to="o" rate="1.per_ms" midpoint="-40.mV" scale="10mV"/>
    <ExpTransition from="o" to = "c" rate="4.per_ms" midpoint="-65.mV" scale="-18mV"/>
  </KSComplex>
  <KSComplex id="h">
    <ClosedState id="c"/>
    <OpenState id="o"/>
    <ExpTransition from="c" to="o" rate="0.07per_ms" midpoint="-65.mV" scale="-20.mV"/>
    <SigmoidTransition from="o" to="c" rate="1per_ms" midpoint="-35mV" scale="10mV"/>
  </KSComplex>
</KSChannel>

<KSChannel id="HH_K" permeantIon="K" gSingle="20pS">
  <KSComplex id="n" instances="4">
    <ClosedState id="c"/>
    <OpenState id="o"/>
    <ExpLinearTransition from="c" to="o" rate="0.1per_ms" midpoint="-55.mV" scale="10mV"/>
    <ExpTransition from="o" to = "c" rate="0.125per_ms" midpoint="-65.mV" scale="-80mV"/>
  </KSComplex>
</KSChannel>

But this depends on external definitions for the element types. What if we want to express the whole lot from scratch?
Need a way to express -

- The structures shared by many models, once

- For a particular model, just the parts unique to that model, with a reference to the shared structure

XML shorthand for as yet undefined canonical form

```xml
<Include file="hhchannel.xml" />
<Unit symbol="mV" dimension="voltage" powTen="-3" />
<Unit symbol="per_ms" dimension="per_time" powTen="3" />
<Unit symbol="pS" dimension="conductance" powTen="-12" />

<HHChannel id="na" conductance="20pS">
 <HHGate id="m" power="3">
 <Forward type="HHExpLinearRate" rate="1.per_ms" midpoint="-40mV" scale="10mV" />
 <Reverse type="HHExpRate" rate="4per_ms" midpoint="-65mV" scale="-18mV" />
 </HHGate>

 <HHGate id="h" power="1">
 <Forward type="HHExpRate" rate="0.07per_ms" midpoint="-65.mV" scale="-20.mV" />
 <Reverse type="HHSigmoidRate" rate="1per_ms" midpoint="-35mV" scale="10mV" />
 </HHGate>
</HHChannel>

<HHChannel id="k" conductance="20pS">
 <HHGate id="n" power="4">
 <Forward type="HHExpLinearRate" rate="0.1per_ms" midpoint="-55mV" scale="10mV" />
 <Reverse type="HHExpRate" rate="0.125per_ms" midpoint="-65mV" scale="-80mV" />
 </HHGate>
</HHChannel>
```

Desired content of the top layer of the model specification

Syntactic fiddles:

"<XXX .../>" is shorthand for "<Component type='XXX'/>"

"a='value unit'" is shorthand for "<value parameter='a' size='val' unit='unit'/>"
<Type name="HHRate">
  <Parameter name="rate" dimension="per_time" />
  <Parameter name="midpoint" dimension="voltage" />
  <Parameter name="scale" dimension="voltage" />
  <Behavior>
    <IndependentVariable name="v" dimension="voltage" />
    <DerivedVariable name="r" dimension="per_time" />
  </Behavior>
</Type>

<Type name="HHExpRate" extends="HHRate">
  <Behavior inherit="variables">
    <DerivedVariable name="r" value="rate * exp((v - midpoint)/scale)" />
  </Behavior>
</Type>

<Type name="HHSigmoidRate" extends="HHRate">
  <Behavior inherit="variables">
    <DerivedVariable name="r" value="rate / (1 + exp(0 - (v - midpoint)/scale))" />
  </Behavior>
</Type>

<Type name="HHExpLinearRate" extends="HHRate">
  <Behavior inherit="variables">
    <DerivedVariable name="x" value="(v - midpoint) / scale" />
    <DerivedVariable name="r" value="rate * x / (1 - exp(0 - x))" />
  </Behavior>
</Type>
<Type name="HHGate">
    <Parameter name="power" dimension="none" />
    <Child name="Forward" type="HHRate" />
    <Child name="Reverse" type="HHRate" />
    <Behavior>
        <IndependentVariable name="v" dimension="voltage" />
        <StateVariable name="q" dimension="none" />
        <ExternalVariable name="rf" dimension="per_time" select="Forward/r" />
        <ExternalVariable name="rr" dimension="per_time" select="Reverse/r" />
        <TimeDerivative variable="q" value="rf * (1 - q) - rr * q" />
        <DerivedVariable name="fcond" dimension="none" value="q^power" />
    </Behavior>
</Type>

<Type name="HHChannel">
    <Parameter name="conductance" dimension="conductance" />
    <Children name="gates" type="HHGate" min="0" max="4" />
    <Behavior>
        <IndependentVariable name="v" dimension="voltage" />
        <ExternalVariable name="gatefeff" dimension="none" select="product(gates[*]/fcond)" />
        <DerivedVariable name="g" value="conductance * gatefeff" />
    </Behavior>
</Type>
Status

- Part of NeuroML 2.0 development project. Docs at www.psics.org/lems
- Provides a set of elements and an interpreter for building and running models using user-defined types.
- Early days – mainly experimental at present
- Can retrofit many NeuroML elements so that some models can be run on the generic interpreter
- Some success retrofitting SBML and SED-ML
- The INCF NineML project is aiming to develop a standard for this type of model specification
  - Focus on simple cells and networks but should generalize