Not a slow snail:

Rapid rise of environmental awareness and ecological insights regarding invasive island apple snails (*Pomacea insularum*)

Romi L. Burks¹ and Jess Van Dyke²

Southwestern University, Georgetown, TX
burksr@southwestern.edu

Snail Busters LLC
jessvd@aol.com
Acknowledgments

Undergraduate Students
Becca Marfurt ’05
Brandon Boland ’07
Sarah Hensley ’08
Colin Kyle ’09
Matt Trawick ’10
Megan Rice ’11
Alexis Kropf ’12
Matthew Barnes ’06
Abby Youens ’07
James McDonough ’09
Scott Manusov ’09
Olivia Stanzer ’10
Brandon O’Connor ’12
Vanessa Toro ’12

Apple Snail Colleagues
Ken Hayes, Smithsonian
Rob Cowie, University of Hawaii
Bob Howells, TPWD (retired)
Mark Kramer, ABNC
Mariana Meerhoff, Uruguay
Matthew Harwell, USFWS
Mollusks invasions neither slow nor without consequence...especially for wetlands

- Come with other invasives
 - Hitchhiking
- Habitat destruction
 - Impede restoration efforts
- Food web alteration
- Potential disease vector
Talk Outline & Model

- Documenting Pace

Predicting Pace

Keeping Up with Pace

Invasive History + Reproductive Habits + Management Actions

Exotic Invasive *P. insularum*

From Rawlings *et al.* 2007

Applesnails and Giant Ram’s-horn Snails

All genera and species of the Family Ampullariidae (previously called Pilidae) including *Pomacea* and *Marisa*, except spiketop applesnail (*Pomacea bridgesii*)

Figure 1

Phylogenetic relationships among 46 unique mitochondrial haplotypes from 95 individual apple snails for which complete sequences were generated.

Armand Bayou, Clear Lake, Texas
P. insularum clutches in TX equal 8x as large (on average) as **P. canaliculata** clutches from UR

Out of South America: multiple origins of non-native apple snails in Asia

Predicting the Pace

Documenting Pace + Predicting Pace

Invasive History + Reproductive Habits
Oviposition
Experimental Set-Ups

- Deterred non-substrate oviposition
- Water temperature: 28°C
- Recorded number of clutches laid on each surface
- Statistics:
 - Chi² Preference Test
Where do they lay clutches?
Do lab experiments reflect field patterns?

Percentage of Oviposition Site Census

<table>
<thead>
<tr>
<th>Clutch Substrate</th>
<th>August 2008</th>
<th>May 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td>80%</td>
<td>60%</td>
</tr>
<tr>
<td>Wood</td>
<td>40%</td>
<td>30%</td>
</tr>
<tr>
<td>Metal</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Concrete</td>
<td>0%</td>
<td>10%</td>
</tr>
</tbody>
</table>

N=584

N=180

p<0.05

How do frequency and intensity alter water stress to clutches?

Developmental Stage matters

Clutch Age? On-going

Kruskal-Wallis $\chi^2 = 21.927$ $p < 0.001$

What other ways do snails and plants interact?

Habitat and Herbivory

![Graph showing plant consumption by snails with or without crayfish.](image)

- 0.2 g g⁻¹ d⁻¹
- 50% less
- 80% less

![Bar chart showing number of observations for different plant species.](image)

- Milfoil
- Taro
- Hyacinth

Incubating in the publication process:

- Oviposition trends indicate a reliance on wild taro in the lab and field.
- Snails also utilize exotic plants for food and shelter.
 - Targeting these plant stands may worth increased management action.
- Water exposure damages clutches.
 - Lower hatching rates; premature release
 - Also likely to depend on degree of clutch development
- Eggs likely represent the easiest life history stage to manage to help slow down population growth.
Keeping up with the pace of invasion

Invasive History + Reproductive Habits + Management Actions
Spiral of Invasion

- Native Range
- Arrival in New Environment
- Establishment
- Reproduction
- Spread to New Areas
- Impact

• Fecundity = 2000 eggs/adult
• Lab Hatching Efficiency = 30%
• Juvenile survivorship = 1%

Pace of knowledge gain

http://snailbusters.wordpress.com/about/
Academia meets Consulting: Snail Busters

Jess Van Dyke
- Retired from Florida DEP
- Regional Biologist
- Colleague: Dr. Sean McGlynn

Started work with stormwater pond south of Tallahassee, FL

Discovered hand-removal to be impossible
- Started trapping
- Has removed 4 tons from 15-acre system

Started blog b/c discouraged on the lack of information about these snails in the primary literature
Snails make the news yesterday!

- Apple snails in Mobile, AL
- Spread into Mobile-Tensaw delta
- Dramatic changes in just 1 year
- Successfully overwintered

Photo and Story Credit to Ben Raimes
Hot off the blog:

- Jess’s research
 - Test of SePRO’s chelated copper products
 - Solicited by professional colleague
 - Describes challenges of working with snails and exposure to chemicals
 - Provides cautious preliminary results
Hot off the blog: Battle Snail versus Other EIS

Red imported fire ants attacking a clutch of **Solenopsis invicta**

Procamburus clarkii, Red Swamp or Louisiana crayfish
Hot off the blog: Distribution of *Pomacea insularum* in South Florida

- Threat to native *Pomacea paludosa*
- Multi-faceted impacts on endangered kite
- Huge challenge to control spread
Syncing Up the Pace

- Action regarding apple snails & wetlands needs to be taken quickly.
- Understanding basic fecundity remains central to applied management.
- Scientific blogging of apple snail invasion serves as to foster communication & research in “real time.”
- Helps everyone keep up the pace with new insights.
Thank you!
Any Questions?

burksr@southwestern.edu
or jessvd@aol.com