Congener specific organic carbon normalized soil and sediment-water partitioning coefficients for the C$_1$ through C$_8$ perfluorinated alkylsulfonic and alkylcarboxylic acids

SIERRA RAYNE1* and KAYA FOREST2

1Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada

2Department of Chemistry, Okanagan College, Penticton, British Columbia, Canada

ABSTRACT

Organic carbon normalized soil and sediment-water partitioning (K_{oc}) coefficients were estimated for all C$_1$ through C$_8$ perfluorinated alkylsulfonic acid (PFSA) and alkylcarboxylic acids (PFCA) congeners. The limited experimental K_{oc} dataset for the straight chain C$_7$ through C$_{10}$ PFCAs and C$_8$ and C$_{10}$ PFSAs was correlated to SPARC and ALOGPS computationally estimated octanol-water partitioning constants and used to predict K_{oc} values for both branched and linear C$_1$ through C$_8$ isomers. All branched and linear congeners in this homologue range are expected to have K_{oc} values >1, leading to their accumulation in organic matter on sediments and soils, retardation during ground and pore water flow, and the preferential association with dissolved organic matter in aquatic systems. Both

*Address correspondence to Sierra Rayne, Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada; Phone: +1 204 786 9265, Fax: +1 204 775 2114; E-mail: rayne.sierra@gmail.com
increasing perfluoroalkyl chain length and linearity increase K_{oc} values with substantial intra- and inter-homologue variation and interhomologue mixing. Variability in K_{oc} values among the PFCA and PFSA congeners will likely lead to an enrichment of more linear and longer chain isomers in organic matter fractions, resulting in aqueous phases fractionated towards shorter chain branched congeners. The expected magnitude of fractionation will require inclusion in source apportionment models and risk assessments. A comparison of representative established quantitative structure property relationships for estimated K_{oc} values from octanol-water partitioning constants suggests that equilibrium partitioning frameworks may be applicable towards modeling PFCA and PFSA environmental fate processes and warrants further study using other partitioning coefficients for which suitable experimental data is available.

Keywords: Perfluorinated acids, perfluoroalkyl carboxylic acids, perfluoroalkyl sulfonic acids, soil and sediment partitioning, organic carbon.
INTRODUCTION

Perfluoroalkyl acids (PFAs) such as the perfluoroalkyl sulfonic acids (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs) (Fig. 1) are now well established as contaminants widely distributed in the environment that display the capacity for long range transport, bioaccumulation, persistence, and a range of toxicological effects.[1-7] Longer chain (≥C₂) PFCAs and all PFSAs are currently thought to arise solely from the use of commercial perfluorinated surfactants, whereas the C₁ PFCA (trifluoroacetic acid; TFA) is both used itself in industry and can also be formed via the oxidative degradation of various precursors such as hydrofluorocarbons, anesthetics, trifluoromethylbenzene based pesticides, and waste incineration.[8-10] It has been suggested that continuous low level TFA releases from biological and/or geological sources must be present to account for the mass of this compound (ca. 250 to 300 million tons) in global oceans, whereas terrestrial, freshwater, and atmospheric reservoirs are primarily anthropogenically derived.[8,11,12] In general, total PFSA and PFCA concentrations in surface and ground waters and marine systems range widely from the low ng L⁻¹ to low mg L⁻¹ levels depending on age and the proximity to point and nonpoint sources of contamination.[3,7,11-74] Wastewaters from semiconductor fabrication plants using photolithographic techniques have the highest reported PFA levels to date, with concentrations reaching well into the mg L⁻¹ range,[75] and even up to g L⁻¹ levels.[76] A number of regions in Asia, Europe, and North America are now reporting samples analyzed from surface water sources that exceed the state of New Jersey (USA) 40 ng L⁻¹ straight chain C₇ PFCA 39 (n-PFOA) guideline for drinking water and the 500 ng L⁻¹ and 300 ng L⁻¹ acceptable threshold values for n-PFOA and the straight chain C₈ PFSA 89 (n-PFOS) in the state of Minnesota (USA). Few studies have reported PFA levels in sediments, with concentrations ranging from below detection limits up to the low mg kg⁻¹ dry weight.[32,77-80] Even less work has been done on developing a database of PFA concentrations in soils.[62] A limited survey of soils from sites in Canada,
Malawi, the United Kingdom, and Chile showed TFA was present at low ng g⁻¹ levels at values similar to, or exceeding, that of other haloacetic acids.[81]

To better understand the environmental fate of PFAs and to assist in the design and optimization of treatment processes, additional information is needed regarding PFA partitioning between various matrices. Laboratory scale sorption of the straight chain C₄ and C₈ PFSAs and C₇ PFCA onto activated carbon (granular (GAC) and particulate (PAC)), zeolite, ion exchange resins, and wastewater sludge has been reported.[7,82-84] Increasing perfluoroalkyl chain length and a sulfonic acid head group (versus a carboxylate moiety) increased the sorption onto GAC.[83] For n-PFOS, the relative order of sorption effectiveness was GAC > zeolite > sludge, and increasing silica content was noted as improving sorption to zeolites. n-PFOS was preferentially sorbed onto GAC and PAC in one study, whereas an amberlite anion exchange resin was found to be superior to GAC and PAC for removing n-PFOA from solution.[84] Recent work by Lampert et al. found that there were significant differences in removal efficiencies for n-PFOA and n-PFOS depending on the anion exchange resin type, but that a quaternary amine acrylic polymer resin could effectively remove both analytes,[82] which is perhaps expected for PFAs given how this cationic amine resin may be able to effectively mimic a proteinophilic sorption surface. Interestingly, Lampert et al. have also indirectly provided clear support for a n-PFOA pKₐ of between 3 and 4 during their evaporation treatment studies on this compound. No evaporative losses of the analyte were found at neutral pH values, whereas substantial losses were observed at pH 2.6, supporting our claims,[85] and that of others,[86-88] for an operational pKₐ value of about 3 to 4, rather than previous estimates near zero.[89-91] In some cases, water treatment using activated carbon has been shown to be effective for removing longer chain PFAs such as n-PFOA from contaminated source waters.[20,54-56,70] PFAs, like their hydrocarbon fatty acid analogs,[92,93] also sorb to inorganic surfaces such as sands, clays, iron oxides, calcium fluoride, and surface modified silicas.[82,94,95] but organic matter
sorption is thought to be dominant in most environmental systems and offer the most promising for treatment methods.

In contrast to the predominantly lipophilic character of nonpolar contaminants, the proteinophilic nature of the polar/ionic PFAs is well established from both synthetic chemistry and toxicological perspectives. For example, in synthetic chemistry, PFAs such as TFA are effective protein solvents and are used for making derivatives of amino acids and carbohydrates.[26] In biological systems, PFAs tend to associate with and potentially covalently bind to proteins such as albumin and in protein rich regions of the body such the blood, kidneys, and the liver.[96-98] This proteinophilic behavior in vivo results in large bioconcentration factors (BCFs) and bioaccumulation factors (BAFs) in protein rich tissues such as the liver, blood, and kidneys for longer chain PFAs.[1,2,4,6,14,22,25,41,61,78,99-104] The affinity for protein surfaces has also been recently exploited by the use of molecularly imprinted chitosan polymer adsorbents to remove PFAs from waste streams.[105] Perhaps because of the focus on their proteinophilic nature and the hydrophilic head group/oleophobic tail combination, a limited number of studies have investigated the partitioning of PFAs between more traditional organic materials and aqueous phases.[106,107] However, these studies have been limited to the longer chain (>C₇) PFAs, with little available information on the shorter chain congeners. This knowledge gap is of importance, since an inverse correlation was found between PFA chain length and the steady state biota sediment accumulation factors (BSAFs) using the aquatic oligochaete Lumbriculus variegatus,[76] highlighting the need to extend existing organic matter-water partitioning datasets for the longer chain PFAs to the shorter chain congeners who may have higher BSAFs. It should also be noted that the difficulty of both measuring and estimating the partitioning constants and physicochemical properties of perfluorinated compounds (PFCs) in general has led to a significant amount of discussion in the literature,[85-91,108-113] potentially dissuading rigorous investments in extended experimental investigations.
With low reported rates of abiotic and biotic degradation for PFAs, a focus is developing to better understand and model the partitioning behavior of PFAs in natural and engineered systems. Due to the increasing awareness of the large number of potential PFA congeners\cite{114} and the experimental costs in measuring a range of partitioning constants for each isomer, our recent efforts\cite{85,99,109-111,115} have been concentrated on using computational tools and available experimental datasets to predict the physicochemical properties of these compounds. In the present study, we synthesize the current state of the art regarding partitioning of PFAs between organic carbon and aqueous environments and present a congener specific model that estimates the organic carbon normalized soil and sediment-water partitioning (K_{oc}) coefficients for the C_1 through C_8 PFCA and PFSA isomers.

METHODS AND MATERIALS

Experimental organic carbon normalized soil and sediment-water partitioning (K_{oc}) coefficients for PFCA and PFSA congeners are from Higgins and Luthy.\cite{106} The numbering system for PFSA and PFCA congeners follows the approach outlined previously.\cite{114} SMILES molecular formats\cite{116,117} of the unionized acid form of each PFA congener were used as computational inputs. For each PFA congener, both the log$_{10}$ K_{ow} value (log$_{10}$ P for the molecular form) and the log$_{10}$ $D_{octanol}$ lipophilicity value for ionizable compounds were estimated using SPARC\cite{118-122} The log$_{10}$ P values were also estimated using the ALOGPS approach\cite{123-125} which has been previously validated for a wide range of organic compounds.\cite{126} The log$_{10}$ P_i value for the ionized form is not calculable by ALOGPS. The P, P_i, and D values are calculated and related according to the following equations where [HA] and [A$^-$] are the concentrations of neutral and anionic PFA species in octanol (subscript o) and water (subscript w), respectively: $P=[HA]_o/[HA]_w$; $P_i=[A^-]_o/[A^-]_w$, and $D=(P+P_i\times 10^{(pH-pKa)})/(1+10^{(pH-pKa)})$.\cite{127} For comparative
purposes with the straight chain \(C_1\) PFCA congener and the \(C_8\) PFCA and PFSA congeners, log \(P\) values were also calculated using the following methods within the ALOGPS 2.1 program: AC log \(P\), AB/Log \(P\), COSMOFrag, miLogP, ALOGP, MLOGP, KOWWIN, XLOGP2, and XLOGP3.[124] The reliance of SPARC estimated \(\log_{10} D\) values on an underlying SPARC \(pK_a\) estimate warrants caution in the use and interpretation of these values. As we have previously shown, computational methods generally underestimate the \(pK_a\) values of longer chain PFCAs [85] and overestimate the \(pK_a\) values of PFSAs.[110] In addition, substantial perfluoroalkyl chain branching effects on the estimated \(pK_a\) values (and hence, the electrostatic character of the PFA head groups) is predicted by the semiempirical PM6 method, but much reduced branching effects are predicted by SPARC.[85,110,115]

RESULTS AND DISCUSSION

Linear relationships having the following equations were found between the SPARC calculated \(\log_{10} K_{ow}\) and \(\log_{10} D_{octanol}\) values and the ALOGPS \(\log_{10} P\) values with the corresponding sediment organic carbon normalized distribution coefficients (\(K_{oc}\)) for the straight chain \(C_1\) through \(C_{10}\) PFCAs (Fig. 2(a)): \(\log_{10} K_{oc} (L \text{ kg}^{-1}) = 0.438 \pm 0.018 \times \log_{10} K_{ow,SPARC} – 0.651 \pm 0.140 \) (\(r=0.998, p<0.002\) [student's t-test]); \(\log_{10} K_{oc} (L \text{ kg}^{-1}) = 0.432 \pm 0.018 \times \log_{10} D_{octanol,SPARC} + 0.215 \pm 0.109 \) (\(r=0.998, p<0.002\)); and \(\log_{10} K_{oc} (L \text{ kg}^{-1}) = 1.413 \pm 0.019 \times \log_{10} P_{ALOGPS} – 3.938 \pm 0.091 \) (\(r=0.9998, p<0.0002\)). Although only two datapoints were available for the PFSAs (the straight chain \(C_8\) and \(C_{10}\) congeners), similar slopes were observed for the \(K_{ow,SPARC}\) and \(D_{octanol,SPARC}\) values across both PFA classes (ca. 0.43 to 0.45) but the \(P_{ALOGPS}\) slope was substantially higher for the PFSAs (ca. 4.1) compared to the PFCAs (ca. 1.4) (Fig. 2(b)): \(\log_{10} K_{oc} (L \text{ kg}^{-1}) = 0.453 \times \log_{10} K_{ow,SPARC} – 0.561; \log_{10} K_{oc} (L \text{ kg}^{-1}) = 0.439 \times \log_{10} D_{octanol,SPARC} – 1.181; \) and \(\log_{10} K_{oc} (L \text{ kg}^{-1}) = 4.082 \times \log_{10} P_{ALOGPS} – 14.627.\)
Using these regression equations for the PFCAs, $K_{ow,SPARC}$, $D_{octanol,SPARC}$, and P_{ALOGPS} values were calculated for all C_1 through C_8 congeners and the corresponding K_{oc} values estimated via negative linear extrapolation of the relationship observed for the straight chain C_7 through C_{10} isomers (Fig. 3). Given the linearity of the PFCA regressions and the agreement in slope values for the PFCAs and PFSAs using the $K_{ow,SPARC}$ and $D_{octanol,SPARC}$ values, we also conducted an analogous negative linear extrapolation to estimate K_{oc} values for all C_1 through C_8 PFSA congeners (Fig. 4). For both classes, all three approaches predict significant intra- and inter-homologue differences in K_{oc} values. However, only the $K_{ow,SPARC}$ and $D_{octanol,SPARC}$ approaches predict interhomologue mixing, whereby some estimated K_{oc} values from a higher homologue group are lower than some estimated K_{oc} values from lower homologue groups. For example, the linear C_4 PFCA and PFCA congeners are predicted to have higher K_{oc} values than a number of the more branched C_5 through C_8 congeners, which implies a high degree of inter- and intra-homologue fractionation during the partitioning of PFAs to soils and sediments and their movement through ground waters and pore waters. The differential K_{oc} values within and between homologue groups also calls attention to the need for greater use of homologue specific isotopically labeled standards during the extraction of PFAs from environmental matrices (and congener specific standards once the synthetic methods become available). As expected from the available experimental datasets, all approaches suggest K_{oc} values will decline with decreasing perfluoroalkyl chain length. The P_{ALOGPS} approach suggests the greatest rate of K_{oc} decline as the chain shortens, resulting in K_{oc} values <1 ($\log_{10} K_{oc} < 0$) for the $\leq C_3$ PFCAs (e.g., perfluorobutanoic acids) and the $\leq C_6$ PFSAs (e.g. perfluorohexane sulfonic acids). In contrast, both the $K_{ow,SPARC}$ and $D_{octanol,SPARC}$ approaches predict that almost all C_1 through C_8 PFCAs and PFSAs will have $\log_{10} K_{oc}$ values >0 (with the limited exceptions of C_4 PFSA 1 ($\log_{10} K_{oc} = -0.24$) and C_5 PFSA 3 ($\log_{10} K_{oc} = -0.05$) using the $D_{octanol,SPARC}$ approach) and should accumulate in sediments and soils.
As efforts accelerate towards improved congener specific analytical methods and environmental partitioning measurements of branched PFA congeners, increasing focus is being placed on modeling the fate of the branched isomers and incorporating their potentially different environmental and toxicological behavior into multimedia and pharmacokinetic models. All approaches predict substantial branching effects on K_{oc} values, with intrahomologue variation of up to two log$_{10}$ K_{oc} units for both the C$_8$ PFCAs and PFSAs using the $K_{ow,SPARC}$ and $D_{octanol,SPARC}$ proxies and about 0.3 (PFCAs) to 0.9 (PFSAs) units for the P_{ALOGPS} approach (insets given for the C$_8$ congeners in Fig. 3(c) and 4(c) to illustrate branching effect). Similar branching effects are evident for each of the three methods across both PFA classes, indicating that the PFA equilibrium sediment partitioning process is likely to preferentially enrich the linear congeners of each homologue over the corresponding branched isomers compared to the dissolved phase water column signature. As a result, direct comparisons of linear and branched PFA profiles in sediments are not likely valid, and some form of a reconstruction approach will be required to back-calculate dissolved water column signatures as part of an overall source apportionment strategy. We also note that these findings assume equilibration between the sediments and water column, but with the relatively slow kinetics found experimentally for PFA sediment-water partitioning, some aquatic sediments (particularly in rivers with temporally varying PFA inputs) may not be at such equilibrium. For this reason, equilibrium and kinetic studies are required on branched congeners once sufficiently pure authentic standards are available in order to examine whether rate constants for partitioning display perfluoroalkyl chain branching influences. Our predictions that linear PFA congeners should have higher K_{oc} values than branched isomers is supported by the limited available field evidence. Houde et al. examined the fractionation and bioaccumulation of a small subset of C$_8$ PFSA isomers in a Lake Ontario food web and found a similar isomer profile in organisms and sediments, both of which suggested that partitioning into organic matter is preferred by more linear congeners.[61] These findings also support our prior work on estimating bioconcentration factors for
PFAs which also showed that BCFs for linear isomers are expected to be higher than branched counterparts.[99]

The surfactant nature of PFAs has led a number of researchers and regulatory agencies to question the applicability of well established partitioning coefficients such as K_{ow} and octanol-air (K_{oa}) constants, as well as the more general fugacity approach, in describing (either directly or as modified surrogate proxies) the behavior of PFAs in abiotic and biotic systems.[6,102,128] For example, it has been stated that soil and sediment adsorption coefficients (K_{d}) of PFAs “cannot be estimated with conventional quantitative structure relationship models (QSARs).”[6] The rational given for this is that PFAs partition into proteinophilic environments, which are assumed to not be reasonably represented by the lipophilic surrogate of octanol solvents, and that predicted K_{ow} values “may underestimate the accumulation of [PFAs] into organisms and other environmental media.”[6] Yet, with such definitive statements and assumptions being made over a decadal time scale in the literature, we find it surprising that no prior systematic evaluation of current computational methods for estimating K_{ow} (or similar partitioning constants) has been made for PFAs and subsequently compared to experimental partitioning constants using the wide number of available structure-activity models in the literature that were trained using a broad diversity of other contaminant types. Potential modifications (if required) to existing partitioning constant assessment frameworks for PFAs is an efficient means of improving our knowledge base on these compounds, particularly if the models can be targeted by judicious selection and calibration with appropriate congeners for experimental test work validation. Relying on a purely empirical experimental database of PFA partitioning behavior, as has been proposed,[102] is both unsatisfactory and perhaps unnecessary.

Furthermore, assessments regarding the organic partitioning behavior of PFAs are often made using the
water and octanol solubilities and vapor pressures of PFA salts (e.g., potassium, lithium, and/or ammonium salts), and subsequent calculations of K_{ow} values and Henry's law constants using the properties of these salts. These comparisons are of concern for a number of reasons. PFA salts are significantly more soluble in water (i.e., order of magnitude scales), and similarly much less soluble in less polar solvents such as octanol, than their molecular acid equivalents. While the PFA salts may be the primary industrial compound in use, following their release to environmental and biological systems, the initial ion pair (e.g., a PFA anion and potassium, lithium, or ammonium cation [other cations are also in use industrially]) will reach a new ion pairing equilibrium with the major and minor ion signature of the surrounding medium. Since PFA concentrations in all environmental and biological compartments (i.e., mg/L concentrations at the highest, but more typically in the ng/L to low μg/L range) make them minor constituents of any solvent-solute system, the resulting ion that is paired with a PFA anion will be dominated by the major ions already existing in solution, and not necessarily the source cation. Neither potassium, lithium, nor ammonium are major ions in any aquatic system (except for some brine lakes in terms of potassium and highly eutrophic reducing environments with respect to ammonium). Likewise, while potassium dominates the cation signature of intracellular fluids, it is only a minor ion in plasma and of extracellular fluids.

As well, the likely favored ion pair for PFAs in aquatic systems or in vivo is difficult to estimate given the very large number of possible counterions. These range from common simple major cations such as protons, sodium, potassium, calcium, magnesium, etc., to large macromolecules such as proteins and humic substances that have positively charged regions containing both hydrophilic and hydrophobic cavities that PFAs may prefer to associate with and/or sorb to compared with small and entirely hydrophilic cations. In addition, the relative association/formation constants (K_f) of the possible ion pairs are not known and would involve too great an expense of time and resources to determine for all
possible PFA congeners. Consequently, equilibrium speciation models cannot presently be applied to PFA ion pairing in solution. Less computationally expensive methods for estimating the partitioning behavior of organic compounds are also often not able to handle a number of the possible cations that could be paired with PFA anions. Consequently, the best models for initial screening and preliminary model development regarding partitioning of PFAs into organic matrices are the acids (i.e., proton counterions), particularly since many partitioning processes (e.g., dissolution in relatively nonpolar solvents, volatilization) likely only take place to any significant degree as the molecular acid form. We do note, however, that previous work has established both the effects of chain branching and the head group counterion (e.g., H⁺, Na⁺, Li⁺, K⁺, NH₄⁺, Mg²⁺) on the physicochemical properties of PFAs.[130] Although only one branched PFA was available for testing in this historical study (the terminal monomethyl branched C₈ PFCA 88), both branching and the counterion identity had significant effects on properties such as the critical micelle concentrations and Krafft points. Consequently, future work will need to better define the counterion effects on PFA behavior, but with our current level of uncertainty on this front, a default to assessments with the acid form seems the most productive first step.

Perfluoroalkyl branching influences on the electrostatic role of the acid head groups during partitioning between organic matter and water is also of interest. Following the generation of the initial PFA K₉ dataset, subsequent modeling efforts by Higgins and Luthy to better understand both the perfluoroalkyl chain hydrophobic and acid head group electrostatic effects they observed for PFA sorption (and that of other surfactants such as linear alkylbenzene sulfonates) came to the conclusion that the K₉ values were empirically derived and did not explicitly account for pH and dissolved cation effects.[107] However, the electrostatic contributions from this approach account primarily for differences in the nature of the head group among the various surfactants, rather than the effects of chain branching with
a constant head group identity. Of the 161 possible C₁ through C₈ congeners within each PFA class, only 8 have linear perfluoroalkyl chains.¹¹⁴ As we have demonstrated in prior work, various computational approaches yield differing predictions regarding charge magnitudes and distributions on the PFA head groups within a particular class,⁸⁵,¹⁰⁹,¹¹⁵ resulting in a current degree of ambiguity as to the role of branching on PFA head group charge distributions. Further progress in this area will require a continuing evaluation as authentic branched PFA standards become available for experimental evaluation and calibration of existing computational studies, and well as the possible extension and refinement of current computational methods to these compound classes.

No definitive experimentally determined log₁₀ Kₐₐ values are available for any PFCAs or PFAs from which to calibrate the computational inputs. During Kₐₐ testing of the straight chain C₈ PFSA 89 (n-PFOS), it was reported that a third layer formed between the octanol and water phases.⁶,¹²⁸ This result is readily explained by the conceptual partitioning model developed by Higgins and Luthy,¹⁰⁶,¹⁰⁷ whereby their results were best understood by viewing PFAs as being sorbed onto the surface of the organic matter at the interface with the aqueous phase. Thus, the hydrophobic perfluoroalkyl tail is solubilized in the organic phase whereas the hydrophilic head group remains mostly in the aqueous phase. Consequently, organic partitioning of PFAs should be viewed as a joint volume-surface-volume normalized process (perhaps not unexpected for a class of surfactants) rather than the volume-volume normalized process assumptions for traditional lipidic contaminants. In other words, sufficient quantities of PFAs exist at the aqueous-organic interface that this domain needs explicit consideration when quantifying PFA partitioning, in addition to the quantities of PFAs also existing in the two traditional domains (i.e., freely dissolved in the aqueous and organic layers). This view potentially still allows us to use the established experimental methods for determining partitioning, but with a realization that the data may also need to be normalized to the interfacial surface area between the two
phases of interest. One key hypothesis of interest during laboratory testing of PFA partitioning in the presence of aqueous and organic phases is whether the freely dissolved aqueous phase concentrations of PFAs are reduced in the presence of organic matter, and whether this effect (if present) can be quantified. The work of Higgins and Luthy [106] and the work herein clearly demonstrate the ability to quantitatively and predictively describe the partitioning of PFAs in the presence of an organic carbon phase. Regardless of whether the PFAs are freely dissolved in the organic matter or are present at the aqueous-organic interface, the compounds are removed from the freely dissolved aqueous phase.

Therefore, traditional partitioning test work – with some minor conceptual, calculational, and potential experimental modifications – should allow us to probe how these contaminants are likely to behave under relevant environmental conditions.

For example, future K_{ow} testing on PFAs could determine total concentrations dissolved in the bulk aqueous and octanol phases and – also accounting for any sorption to the container – perform a system mass balance (through knowledge of the cross-sectional octanol-water contact area) to determine the surface area normalized concentration of the PFA. This type of experimental work yields the following three partitioning constants for the PFA: (1) conventional $D_{octanol}$ value obtained via dividing the total PFA concentration in the aqueous layer by that in the octanol layer; (2) modified $D_{octanol}$ value obtained by dividing the total concentration of the PFA in the aqueous layer by the surface area normalized total concentration of PFA at the interface; and (3) a composite partitioning constant that divides the total volumetric concentration in the aqueous phase by both the total surface area normalized interface concentration and the total volumetric concentration in the octanol. Such experimental work on a series of straight chain PFCAs and PFSAs for which authentic standards are readily available, and for which we already have field and laboratory traditional K_{oc} data available, would greatly assist in our understanding of the sorption mechanisms. As well, the work would help in developing conceptual and
computational models of the resulting processes that allow model extension to the remaining PFA congeners and application of the results to more quantitative environmental and pharmacokinetic modeling. We also note that preliminary results using the acid form suggest a $\log_{10} K_{ow}$ value of 1.23 for n-PFOS, more than 2.3 log units above the calculated value (-1.08; based on solubilities in octanol and water) for the potassium salt given by other studies and 2 to 3 log units below the $K_{ow,SPARC}$ (4.7), $D_{octanol,SPARC}$ (3.4), and P_{ALOGPS} (4.2) estimates. The experimental details behind this preliminary K_{ow} report are lacking, so it is difficult to assess whether it could potentially be a significant underestimate due to the extraction and analysis difficulties known for PFSA determinations, as well as from failing to account for sorption losses and the possible presence of a significant interfacial layer. However, these findings, and our computational estimates, suggest the prior approach of estimating PFA K_{ow} values by using relative solubilities of one of the many possible PFA salts in the two phases significantly underestimates the organic partitioning behavior of these compounds. $\log_{10} K_{ow}$ values ranging from -2.1 to +0.5 are given for TFA in an environmental risk assessment review for this compound, which compare to our estimates of 1.78 (SPARC K_{ow}), 0.06 (SPARC $D_{octanol}$), and 1.35 (ALOGPS). To the best of our knowledge, there are no reliable peer reviewed experimental estimates or calculations on a K_{ow} value for the C$_7$ PFCA 39 (n-PFOA).

Other than the work of Higgins and Luthy used for our estimates, there appear to be no other laboratory studies that directly and methodically estimate K_{oc} values across a range of PFA homologues. Previous laboratory and field work is generally limited to reporting on single PFA congeners (TFA, n-PFOA, and n-PFOS), resulting in possible concerns about the intercomparability of the K_d and K_{oc} values among the different soil and sediment types and analytical methods used by various investigators. 3M studies reported $\log_{10} K_{oc}$ values of 1.1 for n-PFOA and between 2.6 and 3.1 for n-PFOS. The 3M n-PFOS $\log_{10} K_{oc}$ range agrees with the value of 2.68 reported by Higgins and
but the 3M log\textsubscript{10} K\textsubscript{oc} value for n-PFOA is significantly lower than the corresponding value (2.11) reported by these independent researchers. In three soil types (sand, \(f_{oc}=0.043 \); sandy loam, \(f_{oc}=0.013 \); loam, \(f_{oc}=0.026 \)), van Dijk reported K\textsubscript{d} values <0.2 L kg-1 for TFA.\(^{26}\) Using the relationship \(K_{d} = f_{oc} \times K_{oc} \),\(^{131}\) this translates into an estimated log\textsubscript{10} K\textsubscript{oc} upper limit of <1.2 which agrees with our log\textsubscript{10} K\textsubscript{oc} estimates of 0.13 (SPARC K\textsubscript{ow}), 0.24 (SPARC D\textsubscript{octanol}), and -2.03 (ALOGPS). In a broader study of TFA sorption to 54 soils from North America and Europe,\(^{132}\) log K\textsubscript{oc} values (calculated from the reported K\textsubscript{d} and \(f_{om} \) values using the formula \(K_{d} = 0.58 \times f_{om} \times K_{oc} \)) ranged from 0.25 to 1.77 (mean=median=1.12), in reasonable agreement with our SPARC K\textsubscript{ow} and D\textsubscript{octanol} estimates, the earlier work of van Dijk,\(^{26}\) and field manipulation experiments in an experimental forest.\(^{133}\) The ALOGPS approach appears to underestimate the K\textsubscript{oc} value for TFA. One notable finding of Richey et al. was that anions such as sulfate were found to competitively inhibit TFA sorption.\(^{132}\) Assuming the soil retention behavior of longer chain PFCAs and the PFSAs also can be competitively inhibited by major anions, this implies that significant PFA sorption may not be observed in some ground waters with high ionic strengths. However, Higgins and Luthy \(^{106}\) reported that the longer chain PFAs exhibited greater sediment sorption in the presence of calcium. Thus, the ground water major ion signature will be important in determining to what extent PFA sorption occurs. For example, Higgins and Luthy \(^{106}\) found that sodium did not enhance PFA sorption, so when coupled with the results of Richey et al.,\(^{132}\) this implies that negligible PFA sorption may occur in a ground water with a major ion sodium sulfate signature, but that PFAs may be potentially immobilized in a calcium chloride brine signature, and that some intermediate mobility may be displayed in a calcium sulfate dominated system. Differential partitioning of PFAs also appears likely between marine, fresh, and ground waters with their different hydrogeochemical signatures, such that experimental data and computational estimates derived from near distilled water conditions will need site specific correction factors before they are applied to an aquatic system. We encourage researchers to consider the use of a multidimensional response surface
methodology approach to incorporate the effects of multiple ion concentrations in an overall predictive equation of the aqueous-organic partitioning of PFAs.

Field estimates of $\log_{10} K_{oc}$ values for n-PFOA and n-PFOS can also be made based on measured concentrations in sediments and the overlying water column. We note the absence of similar field data for TFA. Based on the data of Becker et al. in the Roter Main River near Bayreuth, Germany, K_d values ranged from 1.5 to 3.0 L kg$^{-1}$ for n-PFOA and 17 to 42 L kg$^{-1}$ for n-PFOS.[77] Only a range of sediment organic carbon levels across all samples of 0.06 to 0.8% was reported, precluding a detailed calculation of K_{oc} values, although this information suggests that the $\log_{10} K_{oc}$ values for these sediments could range between 2.3 to 3.2 for n-PFOA and 3.3 to 4.8 for n-PFOS. Senthilkumar et al. provided concentrations of straight chain C$_4$, C$_6$, and C$_8$ PFSAs and C$_7$ and C$_{11}$ PFCAs in sediments and river waters from Japan.[32] Analysis of their data for n-PFOA and n-PFOS (the only two analytes with levels above detection limits in sediments) yields $\log_{10} K_{oc}$ values ranging from 1.1 to 2.5 for n-PFOA and 1.6 to 3.4 for PFOS. Odaka and Masunaga measured levels of n-PFOA and n-PFOS in Tokyo Bay.[134] Our analysis of their data shows field $\log_{10} K_{oc}$ values ranging from 1.6 to 2.4 for n-PFOA and 2.3 to 3.9 for n-PFOS. Yu et al. also reported sewage sludge derived $\log_{10} K_{oc}$ values ranging from 3.0 to 3.5 for n-PFOS and 2.4 to 2.8 for n-PFOA.[43] In general, there appears to be good agreement between the laboratory and field measurements of K_{oc} values for the PFAs.

To determine whether the existing QSARs for predicting K_{oc} values based on K_{ow} inputs could also be applied to the PFAs, we choose a representative suite of established literature K_{oc}-K_{ow} regressions and applied them to TFA, n-PFOA, and n-PFOS using the SPARC and ALOGPS estimated partitioning constants for the molecular PFA species (Table 1). In general, reasonable agreement was found between the range of estimated and experimental K_{oc} values using the various approaches, which further calls
into question the prior literature dismissals of applying such equilibrium partitioning approaches towards these compounds. There appears to be no reason why traditional fugacity based approaches and partitioning models cannot be applied for screening level assessments of PFA behavior in environmental systems, particularly if the results are supported by a limited experimental dataset. As more experimental data also becomes available, existing partitioning QSARs can also be retrained to include this new contaminant class.

Similarly, caution must be further exercised in making general assumptions regarding the congener specific partitioning and migration factors of PFAs in various types of soils and sediments. We have already discussed the potential influence of the hydrogeochemical signature on PFA partitioning, but the congener identity and organic content of the soil or sediment will also play a major role on resulting mobility designations (Fig. 5). Using commonly accepted K_d based contaminant mobility ranges, we see that no C_1 through C_8 PFA congener can be designated as either an immobile or conservative movement end member independent of estimated K_{oc} value. Rather, all PFA congeners examined here will have varying mobility designations of at least three mobility classes depending on the organic carbon content of the sorbing matrix (and in many cases, the mobility will span from either end member). In addition, the inter- and intra-homologue variation in mobility is evident in Figure 5, whereby the linear C_4 PFSA 4 (n-PFBA) is expected to have an essentially equivalent ground and pore water mobility rating as the branched C_8 PFSA 28 congener, despite the four carbon difference in chain lengths. Consequently, the mobility of PFAs in soils and sediment pore waters will need to be assessed on a case specific basis that takes into account the intrinsic properties of both the congener and the solid matrix. Support for this predicted differential mobility of PFA congeners in ground water comes from a study of PFA contaminated ground water at military bases, whereby changes in the concentration ratio of the straight chain C_8-C_6 PFSAs moving farther from the point surface infiltration...
source at one of the sites supports our predicted lower K_{oc} values (and hence, K_d values) for the C_6 PFSAs relative to the longer chained counterpart.

PFAs have also been studied in municipal wastewater treatment plants (WWTPs) where sorption of contaminants to organic matter and settling with particulates in grit chambers, trickling filters, rotating biological contactors, and primary/secondary clarifiers, as well as sorption to activation carbon if this polishing step is present, is a major removal process from the final effluent stream. Although it has been previously noted that a means of estimating K_{oc} values for the C_1 through C_8 PFAs would be valuable in better understanding PFA profiles within WWTPs, the potential range of PFA precursors that are subject to biological and physicochemical degradation into PFAs (e.g., perfluoroalkyl sulfonamides, fluorotelomers, etc.) in the wastewater influent (as well as in soils) is vast. This issue makes source apportionment and mass balances nearly impossible given our current limited knowledge regarding congener specific kinetic and thermodynamic parameters for degradation and partitioning. A similar caveat must be applied to ground and pore water modeling of PFAs. Biogeochemical processes that degrade PFA precursors in soils and sediments could greatly complicate the application, calibration, and interpretation of any PFA partitioning efforts. However, as more kinetic and degradation product data becomes available for PFA precursors, this additional information can be included in congener specific multimedia models for a more reliable understanding of how these contaminants are behaving in both natural and engineered systems.

The potential for partitioning of PFAs into sediments and on soils, and the K_{oc} based controls on these processes, has large implications for our understanding of how these contaminants behave in aquatic systems. Sediments with PFA reservoirs that act as future source inputs to the overlying water column following a highly contaminated pulse input, as well as a general source of these contaminants to
benthic organisms and lacustrine food webs, have also been discussed elsewhere.[25,78,80,147] Yet, in some cases, any impedence of PFA transport from upstream watershed sources towards marine deposition has been entirely dismissed (i.e., PFA inputs move with in stream and ground water retardation factors (R_f) at unity) without detailed consideration.[27] The field mobility of the longer chain PFAs such as n-PFOS and n-PFOA has not been determined, and inferences regarding the appearance of dissolved phase PFAs in streams whereby nearby surface application of waste solids to soils has occurred [21] must presently be restricted to a range of possible transport mechanisms that include hindered and/or unhindered surface and/or ground water transport or erosion and surface transport of PFA containing particulates followed by PFA desorption in receiving waters. Caution must also be exercised in neglecting sorption losses to sediments in riverine PFA mass balance studies, particularly where only PFAs are monitored in upstream and downstream waters and wastewater inputs and a mass balance is achieved, as has been previously done.[37] In these studies, PFA precursors could be degrading in situ within a particular stream reach as an additional (and unaccounted for) PFA input with fluxes that offset PFA losses to sediments.

Similarly, Wujcik et al. stated that no TFA was removed by soil retention in watersheds as part of their mass balances for the terminal Mono Lake in California and Pyramid Lake in Nevada,[40] despite earlier definitive studies showing significant TFA retention in some watersheds.[132,133,148] Work that neglected soil retention of TFA in watersheds in Germany reported average TFA concentrations in river waters that were 1.3 fold higher than found in precipitation, but since the authors stated that regional evaporation (and assumed negligible volatilization losses of TFA from terrestrial and aquatic ecosystems) should lead to aquatic TFA levels about twice that of precipitation, an unknown reservoir or removal process was invoked to explain the discrepancy. Yet, if one assumes about 30 to 40% TFA retention in these German forests, at the lower mid-point of the range (20 to 60%) of what was reported
in organic forest soils for the northeastern U.S.,[132,133,148] this difference is readily explained with an already known removal mechanism. Another study of concentrations and mass fluxes of TFA in aquatic systems from Switzerland also ignored sediment partitioning and soil retention.[74] PFA losses to sediments were also ignored in a mass balance of these compounds in Lake Ontario,[149] but a subsequent analysis of potential sorption sensitivity towards this assumption was shown to likely be valid under the site specific conditions.[106] However, sedimentation rates in mostly oligotrophic lakes such as Lake Ontario (http://www.epa.gov/glndpo/glindicators/water/trophica.html) are expected to be much lower than in more eutrophic systems and/or lakes with large sediment inputs (such as behind hydroelectric dams). In these alternate cases, sedimentation rates may play a dominant removal mechanism for PFAs from upstream aquatic inputs, and the neglect of sediment losses for these contaminants would overestimate PFA impacts on downstream systems, and underestimate risks for the direct receiving water body from PFA trapping, recycling, and subsequent release. Furthermore, any dam removal efforts may also need to explicitly consider the potentially large PFA reservoirs trapped in their impoundments.[150]
CONCLUSIONS

Congener specific organic carbon normalized soil and sediment-water partitioning (K_{oc}) coefficients were estimated for the C$_1$ through C$_8$ perfluorinated alkylsulfonic acids (PFSAs) and alkylcarboxylic acids (PFCAs) using SPARC and ALOGPS derived octanol-water partitioning constants calibrated to experimental values for the straight chain C$_7$ through C$_{10}$ PFCAs and C$_8$ and C$_{10}$ PFSAs. The results suggest that all C$_1$ through C$_8$ PFCA and PFSA congeners should accumulate in organic matter on sediments and soils, and the movement of these compounds through ground and pore waters will be retarded via the organic carbon partitioning process. Estimated K_{oc} values within each compound class generally increase with increasing chain length and increase with increasing linearity of the perfluoroalkyl chain. Substantial intra- and inter-homologue variation in K_{oc} values is expected. Interhomologue mixing of K_{oc} values may complicate interpretations of how these compounds behave in soil and sediment systems.

The expected congener specific variation in K_{oc} values will preferentially fractionate isomer profiles towards longer chain linear congener dominance in the organic matter, leaving an aqueous system enriched in lower homologue branched congeners with less affinity for organic matter partitioning. This isomeric fractionation will require inclusion in source apportionment models and risk assessments. Existing quantitative structure property relationships were also found to reasonably model the experimental K_{oc} values of representative congeners, suggesting that established equilibrium partitioning frameworks may be applicable towards modeling PFCA and PFSA environmental fate processes. None of the C$_1$ through C$_8$ PFCA or PFSA congeners is expected to have a single pore water or ground water mobility index independent of the organic matter content in the surround matrix. As a result, generalities regarding the subsurface or sediment in situ mobility of these compounds do not
appear valid, necessitating a congener and site specific analysis of migration and partitioning behavior.

ACKNOWLEDGMENTS

S.R. thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support.
REFERENCES

[10] Ellis, D.; Moody, C.; Mabury, S. Trifluoroacetic acid and longer chain perfluoro acids: Sources

158.

[62] Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, fate and transport of

[80] Higgins, C.P.; Field, J.A.; Criddle, C.S.; Luthy, R.G. Quantitative determination of

[88] McMurd, C.J.; Ellis, D.A.; Webster, E.; Butler, J.; Christensen, R.D.; Reid, L.K. Aerosol
enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA.

[98] Vanden Heuvel, J.P.; Kuslikis, B.I.; Peterson, R.E. Covalent binding of perfluorinated fatty acids...

[99] Rayne, S.; Forest, K.; Friesen, K.J. Estimated bioconcentration factors (BCFs) for the C₄ through C₈ perfluorinated alkylsulfonic acid (PFSA) and alkylcarboxylic acid (PFCA) congeners. J. Environ. Sci. Health A. 2009, 44, in press.

FIGURE CAPTIONS

Figure 1. General structures of perfluoroalkyl sulfonic acids (PFSAs) and carboxylic acids (PFCAs).

Figure 2. Correlations between SPARC calculated $\log_{10} K_{ow}$ (circles) and $D_{octanol}$ (squares) and ALOGPS calculated $\log_{10} P$ (triangles) values and experimental sediment organic carbon normalized K_{oc} values for the (a) C$_7$ through C$_{10}$ PFCAs and (b) C$_8$ and C$_{10}$ PFSAs. Error bars are from the literature K_{oc} source.$^{[106]}$

Figure 3. Estimated congener specific K_{oc} values for the C$_1$ through C$_8$ PFCAs using the (a) SPARC calculated K_{ow}, (b) SPARC calculated $D_{octanol}$, and (c) ALOGPS calculated $\log_{10} P$ values. Inset shows estimated K_{oc} values for the C$_8$ PFCAs using the ALOGPS method.

Figure 4. Estimated congener specific K_{oc} values for the C$_1$ through C$_8$ PFSAs using the (a) SPARC calculated K_{ow}, (b) SPARC calculated $D_{octanol}$, and (c) ALOGPS calculated $\log_{10} P$ values. Inset shows estimated K_{oc} values for the C$_8$ PFSAs using the ALOGPS method.

Figure 5. Ground water mobility domains based on K_d (L kg$^{-1}$) values$^{[135]}$ for selected PFCA and PFSA congeners across a range of K_{oc} and soil organic carbon content (f_{oc}) values.
Table 1. Application of established literature approaches for estimating organic carbon normalized soil and sediment-water partitioning coefficients (K_{oc}) from K_{ow} values towards representative PFA congeners.

<table>
<thead>
<tr>
<th></th>
<th>TFA</th>
<th>n-PFOA</th>
<th>n-PFOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory and field experimental range</td>
<td>0.25 to 1.77</td>
<td>1.1 to 3.2</td>
<td>1.6 to 4.8</td>
</tr>
<tr>
<td>Higgins and Luthy (2006)a experimental</td>
<td>n/a</td>
<td>2.11</td>
<td>2.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>$K_{ow,SPARC}$</th>
<th>P_{ALOGPS}</th>
<th>$K_{ow,SPARC}$</th>
<th>P_{ALOGPS}</th>
<th>$K_{ow,SPARC}$</th>
<th>P_{ALOGPS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current study QSAR</td>
<td>0.13</td>
<td>-2.03</td>
<td>2.09</td>
<td>2.12</td>
<td>2.68</td>
<td>2.68</td>
</tr>
<tr>
<td>Karickhoff et al. (1979)b</td>
<td>1.12</td>
<td>0.85</td>
<td>3.94</td>
<td>2.70</td>
<td>2.94</td>
<td>2.67</td>
</tr>
<tr>
<td>Karickhoff et al. (1981)c</td>
<td>0.73</td>
<td>0.55</td>
<td>2.57</td>
<td>1.76</td>
<td>1.91</td>
<td>1.74</td>
</tr>
<tr>
<td>Sabljic et al. (1995) – organic acidsd</td>
<td>1.39</td>
<td>1.13</td>
<td>4.08</td>
<td>2.89</td>
<td>3.12</td>
<td>2.86</td>
</tr>
<tr>
<td>Sabljic et al. (1995) – organic acids and alcoholsd</td>
<td>1.34</td>
<td>1.13</td>
<td>3.44</td>
<td>2.52</td>
<td>2.69</td>
<td>2.49</td>
</tr>
<tr>
<td>Seth et al. (1999)e</td>
<td>0.62</td>
<td>0.47</td>
<td>2.19</td>
<td>1.50</td>
<td>1.63</td>
<td>1.48</td>
</tr>
<tr>
<td>Franco and Trapp (2008) – strong acids (pK_a<4)f</td>
<td>1.74</td>
<td>1.69</td>
<td>2.22</td>
<td>2.01</td>
<td>2.05</td>
<td>2.01</td>
</tr>
</tbody>
</table>

a ref. [106]; b ref. [151]; c ref. [152]; d ref. [153]; e ref. [154]; f ref. [155].
Fig. 1

\[
\begin{align*}
\text{F}_{2n+1}\text{C}_n\text{SO}_R & & \text{F}_{2n+1}\text{C}_n\text{CO}_R \\
\text{C}_x; x = n & & \text{C}_x; x = n+1 \\
PFSAs & & PFCAs
\end{align*}
\]
Fig. 2
Fig. 4
Fig. 5