MEASURING the TOUGHNESS of SOLID CANCERS
A FRACTURE MECHANICS APPROACH

Nagesh Ragavendra, MD
William Klug, PhD
J Woody Ju, PhD

Departments of Radiology,
Mechanical and Aerospace Engineering &
Civil and Environmental Engineering

University of California, Los Angeles
Tissue Stiffness Drives Tumor Formation

PANEL 1: Cells of a normal breast duct

PANEL 2: Structure of the duct begins to degrade

PANEL 3: Uncontrolled cell growth of duct-lining cells invade the duct tube

Tensional homeostasis and the malignant phenotype

Matthew J. Paszek,1,2,6 Nastaran Zahir,1,2,6 Kandice R. Johnson,1,2 Johnathon N. Lakins,2 Gabriela I. Rozenberg,2 Amit Gefen,3 Cynthia A. Reinhart-King,1 Susan S. Margulies,1 Micah Dembo,4 David Boettiger,5 Daniel A. Hammer,1 and Valerie M. Weaver2,*

1Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
2Department of Pathology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
3Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
Elastography
- Manual Compression
- Transient Elastography
- Acoustic Radiation Force

Stiffness

Stiffness Measurement

- Height change at force change is determined by the stiffness
- Interaction function: elastic constants

Fracture Mechanics Based Method

Elasticity + Fracture Creation

Fracture Toughness

Courtesy: O.Marti
FRACTURE MECHANICS
Describes how cracks initiate & propagate in solids and semisolids

FRACTURE Leads:
- Two new surfaces
- Energy is consumed to overcome Surface Energy

FRACTURE TOUGHNESS >>> REPRESENTS
Energy needed to create a unit fracture surface

Mode 1 Fracture

Courtesy: Prof. Ramesh [IIT Madras]
This movie clip demonstrates the technique of manual probing of the solid thyroid tumor with a fine needle. Note the apparent ease with which the needle travels through a non-cancerous tumor. In contrast, a cancerous tumor offers substantial resistance to needle insertion and penetration. Remarkable differences in haptic force cues were apparent between cancerous and benign tumors.

Click here for file [http://www.biomedcentral.com/content/supplementary/1754-1611-2-12-S1.mov]
Simulations: Haptic Differences Between Benign and Malignant Tumors

Benign Tumor:
No Resistance to Needle Penetration

Malignant Tumor:
Variable Resistance to Needle Penetration
In vivo analysis of fracture toughness of thyroid gland tumors

Nagesh Ragavendra1, JW Ju2, James W Sayre1,6, Sharon Hirschowitz3, Inder Chopra4 and Michael W Yeh5

PROTOTYPE:

Mechanical Device to measure fracture toughness of solid tumors is under development.
Summary

Fracture Toughness
Mechanical Property of Solid Tumors
Potentially Quantifiable
Mechanical Tumor Marker

Goal – Next Phase
Measure fracture toughness of a solid tumor
Assess malignant potential

The End