SBML: Where It’s Been and Where It’s Going

Michael Hucka

Senior Research Fellow—Control and Dynamical Systems
Co-director—Biological Network Modeling Center (BNMC), Beckman Institute
California Institute of Technology
Pasadena, California, USA
Background
Background

- Conviction that computational modeling is crucial
- Enables **quantitative** hypothesis testing
Conviction that computational modeling is crucial
- Enables *quantitative* hypothesis testing
- Not a new idea—dates to 1940’s if not earlier
- Theoretical & technological advances made since then
Background

- Conviction that computational modeling is crucial
 - Enables **quantitative** hypothesis testing
- Not a new idea—dates to 1940’s if not earlier
 - Theoretical & technological advances made since then
- Support is better than ever
 - General mathematical environments
 - Special-purpose software tools
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing

CellDesigner
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing

![CellDesigner](image)

![JDesigner](image)

![COPASI](image)

![JigCell](image)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1->M1</td>
<td>MPF inactivation</td>
<td>Mass Action</td>
</tr>
<tr>
<td>Mi->M1</td>
<td>MPF activation</td>
<td>Mass Action</td>
</tr>
<tr>
<td>Cdc25 inactivation</td>
<td>Michaelis-Menten</td>
<td>vDCDC *CAC</td>
</tr>
<tr>
<td>Cdc25 activation</td>
<td>Michaelis-Menten</td>
<td>vDCDC *CAC</td>
</tr>
<tr>
<td>Wee1 inactivation</td>
<td>Michaelis-Menten</td>
<td>vDCDC *CAC</td>
</tr>
<tr>
<td>Wee1 activation</td>
<td>Michaelis-Menten</td>
<td>vDCDC *CAC</td>
</tr>
<tr>
<td>L+</td>
<td>Labelled inactive MPF affected by Cdc25</td>
<td>Michaelis-Menten</td>
</tr>
<tr>
<td>L2</td>
<td>Labelled inactive MPF affected by Wee1</td>
<td>Michaelis-Menten</td>
</tr>
</tbody>
</table>

![JigCell](image)
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing

SBML Model Integration Server

A web interface to the SBML_odeSolver program

This server will integrate a valid SBML model. At this stage, the web service is experimental!!!

Instructions

- Please upload a valid SBML Model
- Please provide a valid email address (you will be notified by email)
- Your model will be validated prior to integration; use the function
- If validation errors occur, please correct them and resubmit your model

Choose File: no file selected

Your Email Address

1000 Simulation Time (use scientific notation e.g., 1e7 for 10000000)

100 Print Step

1e-09 Absolute Error

0.0001 Relative Error

SBML ODE Solver

Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing

Virtual Cell
Ability to exchange models is critical
Ability to exchange models is critical

- Simply publishing equations is not enough
- Don’t want to transcribe equations from papers
- You want a common file format
Ability to exchange models is critical

- Simply publishing equations is not enough
 - Don’t want to transcribe equations from papers
 - You want a common file format
- **Not** a new idea—seems obvious
 - Still, a format hadn’t existed before year 2000
 - Each tool had its own unique proprietary format
 - (Fewer tools too)
JST ERATO
Kitano Project

One initial component: get 8–10 software systems interacting
SBML = Systems Biology Markup Language
SBML = Systems Biology Markup Language

- Machine-readable format for computational models
SBML = Systems Biology Markup Language

- Machine-readable format for computational models
- Suitable for reaction networks
- Arbitrary rate functions

\[2A + B \rightarrow C \]
\[C \leftrightarrow D + F \]

...
SBML = Systems Biology Markup Language

- Machine-readable format for computational models
- Suitable for reaction networks
 - Arbitrary rate functions
 - 2 A + B → C
 - C ↔ D + F
 - ...
- Models can also include
 - Compartments
- Mathematical “extras”
SBML = Systems Biology Markup Language

- Machine-readable format for computational models
- Suitable for reaction networks
 - Arbitrary rate functions
- Models can also include compartments
- Mathematical “extras”
- Declarative, not procedural

\[2A + B \rightarrow C \]
\[C \leftrightarrow D + F \]
...
SBML is an XML format

- SBML defined using UML and XML Schema
- Targeted at XML, but mostly independent of it
- A lingua franca for software, not humans
- Think HTML
Where is SBML today?
Now the *de facto* standard

Systems Biology Markup Language

The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biochemical reaction networks. SBML is applicable to metabolic networks, signaling pathways, regulatory networks, and many others.

Internationally Supported and Widely Used

SBML has been evolving since mid-2000 through the efforts of an international group of researchers and users. Today, SBML is supported by over 100 software systems, including the following (where "**" indicates SBML support in development):

- RALSA
- BASIS
- BIOCHAM
- BioCharon
- ByoDyn
- BioCyc
- BioGrid
- BioModels
- BioNetGen
- BioPathway Explorer
- BioSketchPad
- BioSpell
- DBsolve
- Dizzy
- E-CELL
- ecellJ
- ESS
- FluxAnalyzer
- FluxDr
- Gepasi
- Gillespie2
- HSMB
- HybridSBML
- HMSL-CC
- MMT2
- Modesto
- Moleculizer
- Monod
- Narrator
- NetBuilder
- Oscill
- PANTHER Pathway
- PathArt
- PathScout
- PathwayLab
- PathwayTools
- SBMLmerge
- SBMLR
- SBMLSim
- SBMLToolbox
- SBjID
- SBToolbox
- SBW
- SigPath
- SigTran
- SIMBA

- Supported by >100 systems
- Accepted by journals
- Nature
- PLoS
- BMC
- Used in textbooks & courses
A community of modelers and software developers

- *sbml-discuss* (275+ people), *sbml-announce*
- Annual *SBML Forum* meeting (at ICSB)
- Annual *SBML Hackathon*
A community of modelers and software developers

- **sbml-discuss** (275+ people), **sbml-announce**
- **Annual SBML Forum meeting** (at ICSB)
- **Annual SBML Hackathon**
SBML development process so far

- **Informal discussions** lead to proposals for change
 - Fix errors, lacunae, and niggling issues
 - Self-organized community efforts for significant extensions
 - Whitepapers, discussions, software implementations
- **SBML editors**: Hucka, Andrew Finney, Nicolas Le Novère
 - **Reconcile** proposals for changes
 - **Write** final specifications
Support by SBML Team

- Writing grants for core development
- Writing infrastructure software
 - libSBML
 - MathSBML, SBMLToolbox
- Maintaining web & mailing list resources
- Organizing workshops & other events
Software for working with SBML
Software for working with SBML

- libSBML: API library
Software for working with SBML

- libSBML: API library
- MathSBML: Mathematica user package
Software for working with SBML

- libSBML: API library
- MathSBML: Mathematica user package
- SBMLToolbox: basic MATLAB interface
Software for working with SBML

- libSBML: API library
- MathSBML: Mathematica user package
- SBMLToolbox: basic MATLAB interface
- Online SBML validator at http://sbml.org
SBML “Levels”

- Levels are meant to coexist
- **Level 1**: mostly basic compartmental modeling
- **Level 2**: significantly more features—e.g.:
 - User-defined functions
 - Events
 - “Types” for chemical species and compartments
 - Initial conditions, constraints, other “fiddly bits”
- **Level 3**: now (back) in development
systems biology markup language (SBML) level 2: structures and facilities for model definitions

Andrew Finney
afinney@sbml.org
Physionics PLC
Magdalen Centre
Oxford Science Park
Oxford, OX4 4GA, UK

Michael Hucka
mhucka@sbml.org
Biological Network Modeling Center
Beckman Institute, Mail Code 130-74
California Institute of Technology
Pasadena, CA 91125, USA

Nicolas Le Novère
lenov@ebi.ac.uk
European Bioinformatics Institute
Wellcome Trust Genome Campus, Hinxton
Cambridge, CB10 1SD, UK

SBML Level 2, Version 2, Revision 1
26 September 2006

Corrections and other revisions of this SBML language specification may appear over time. Notifications of revisions are broadcast on the mail list sbml-announce@caltech.edu

The latest revision of the SBML Level 2 Version 2 specification is available at

The latest revision of the SBML Level 2 Version 2 specification is available at
Examples of significant changes

- Much clarified explanation of interpreting reactions
- Simplification to units system
- Species types, compartment types
- “Constraints”
- Support for the Systems Biology Ontology (SBO)
- Recommended standard format for annotations
- “Revisions” process for handling errata
What lies ahead?
Full SBML Test Suite

- Allows developers to test implementation of SBML support
- Critical for improving software interoperability
- Currently have a partial “SBML semantic test suite”
- Needs further work to—
 - Complete coverage of SBML features
 - Improve ease of use
 - Update for Level 2 Version 2 and Level 3
 - Add web system for reporting results, comparisons, etc.
SBML Level 3
SBML Level 3

- Modular language extensions
- Core expected to be based “mostly” on Level 2 Version 2
Modular language extensions
- Core expected to be based “mostly” on Level 2 Version 2
- Layered on top of core: feature sets for—
 - Diagram storage
 - Multicomponent species
 - Models composed of submodels
 - Arrays and/or sets of components
 - Spatial geometry
 - Other capabilities
Modular extensions support in libSBML & SBML Test Suite

- Goal: enable libSBML to be extended through plug-ins
 - Proposals for SBML extensions can come with libSBML add-on
 - Developers can pick & choose which ones are compiled in
- Goal: enable Test Suite to be similarly extended
 - Proposals for SBML extensions can come with Test Suite add-ons
Collateral standardization efforts

- Systems Biology Ontology (SBO)
 - For computational models
 - Add annotations about roles & meanings of the math
- “Parameter sets”
 - Single model, multiple sets of numerical values
Revised SBML governance & development process

- Borrow ideas from W3C & other organizations
- Implement a better-defined, regimented process
 - Calls for proposals, etc.
 - Voting, etc.
 - Issue tracking system
- Have an architectural board to steer development
- Have more SBML Editors
 - Elect SBML Editors for limited terms
Standards body recognition

- Currently not recognized by a standards-making body
 - At some point in the future, it probably should be
 - Of special interest to commercial efforts
- Questions remain
 - **When** to seek standardization
 - **Which agency**? ISO? OMG? W3C?
Closing
The funding

- JST ERATO Kitano Symbiotic Systems Project (Japan) (to 2003)
- National Institute of General Medical Sciences (USA)
- National Science Foundation (USA)
- International Joint Research Program of NEDO (Japan)
- JST ERATO-SORST Program (Japan)
- Japanese Ministry of Agriculture
- BBSRC e-Science Initiative (UK)
- DARPA IPTO Bio-SPICE Bio-Computation Program (USA)
- Air Force Office of Scientific Research (USA)
- STRI, University of Hertfordshire (UK)
- Beckman Institute, Caltech (USA)
- Molecular Sciences Institute (USA)
The SBML Team people

- Hamid Bolouri
- Herbert Sauro
- Andrew Finney
- Maria Schilstra
- Jo Matthews

- Akira Funahashi
- Ben Bornstein
- Ben Kovitz
- Bruce Shapiro
- Sarah Keating

A million thanks to the SBML Community too
Where to learn more

- http://sbml.org
- **Upcoming:**
 - SBML Hackathon 2007 in June at U. Newcastle, UK
 - SBML Forum 2007 in Long Beach, CA, USA, Oct. 5-6 (ICSB 2007)
- **Thank you!**